Что такое диодный мост, принцип его работы и схема подключения

Достоинства и недостатки

Преимущества сварочных аппаратов-выпрямителей в основном заключаются в большой надежности агрегата. Аппарат может использовать практически в любых условиях, даже если вокруг грязь, пыль и прочие «недруги», способные на раз-два уничтожить инвертор. Также с помощью выпрямителя можно выполнять сложные сварочные работы. Например, варить нержавеющую сталь или цветной металл.

При умелом поджиге дуга горит очень стабильно и позволяет вести аккуратный шов. Также выпрямитель можно использовать для большинства ходовых сварочных технологий, начиная от MMA, заканчивая TIG, MIG, MAG технологиями. Еще один немаловажный плюс — это возможность организации сразу нескольких сварочных постов от одного аппарата. Это значит, что вы сразу несколько человек могут варить, используя один лишь выпрямитель. Такой аппарат называется выпрямитель сварочный многопостовой и применяется на производстве.

Еще один минус — это высокая стоимость комплекта оборудования. Сам выпрямитель стоит не очень дорого, а вот сопутствующее ему оборудование может оказаться не по карману. Впрочем, об этом мы подробнее рассказываем далее. Также учитывайте, что выпрямитель потребляет очень много электроэнергии, и вы можете быть не готовы к большим счетам.

Последний минус, который можно назвать одновременно плюсом — это необходимость высокой квалификации для формирования качественного шва. Если вы новичок, то будьте готовы к годам постоянной практики. С другой стороны, если вы научитесь варить выпрямителем, то после него сможете варить чем угодно. И это несомненное достоинство.

Проверка диодов Шоттки

Бытовой мультиметр хорошо справляется с задачей проверки любого вида диодов с барьером Шоттки. Способ проверки очень схож с проверкой рядового диода. Однако есть свои секреты. Электронный элемент с утечкой особенно тяжело поддаётся корректной проверке. Во-первых, диодную сборку необходимо извлечь из схемы. Для этого потребуется паяльник. Если диод пробит, то сопротивление, близкое к нулю, во всех возможных режимах работы подскажет о его неработоспособности. По физическим процессам это напоминает замыкание.

«Утечка» диагностируется сложнее. Самый распространённый мультиметр для населения – dt-830, в большинстве случаев измерений в положении «диод» не увидит проблему. При переведении регулятора в положение «омметр» омическое сопротивление уйдёт в бесконечность. Также прибор не должен показывать наличие Омического сопротивления. В противном случае требуется замена.

Диоды Шоттки распространены в электрике и радиоэлектронике. Область их использования широкая, вплоть до приёмников альфа излучения и различных космических аппаратов.

Схема диодного моста

Более совершенной является двухполупериодная схема выпрямления, когда используются и положительный, и отрицательный полупериод. Существует несколько разновидностей таких схем, но чаще всего используется мостовая. Схема диодного моста приведена на рис. 3в. На ней красная линия показывает, как протекает ток через нагрузку во время положительных, а синяя — отрицательных полупериодов.

Рисунок 4. Схема выпрямителя на 12 вольт с использованием диодного моста.

И первую, и вторую половину периода ток через нагрузку протекает в одном и том же направлении (рис. 3б). Количество пульсации в течение одной секунды не 50, как при однополупериодном выпрямлении, а 100. Соответственно, при той же емкости конденсатора фильтра эффект сглаживания будет более ярко выражен.

Как видно, для построения диодного моста необходимо 4 диода — VD1-VD4. Раньше диодные мосты на принципиальных схемах изображали именно так, как на рис. 3в. Ныне общепринятым считается изображение, показанное на рис. 3г. Хотя на ней только одно изображение диода, не следует забывать, что мост состоит из четырех диодов.

Мостовая схема чаще всего собирается из отдельных диодов, но иногда применяются и монолитные диодные сборки. Их проще монтировать на плате, но зато при выходе из строя одного плеча моста, заменяется вся сборка. Выбирают диоды, из которых монтируется мост, исходя из величины протекающего через них тока и величины допустимого обратного напряжения. Эти данные позволяет получить инструкция к диодам или справочники.

Полная схема выпрямителя на 12 вольт с использованием диодного моста приведена на рис. 4. Т1 — понижающий трансформатор, вторичная обмотка которого обеспечивает напряжение 10-12 В. Предохранитель FU1 — нелишняя деталь с точки зрения техники безопасности и пренебрегать им не стоит. Марка диодов VD1-VD4, как уже говорилось, определяется величиной тока, который будет потребляться от выпрямителя. Конденсатор С1 — электролитический, емкостью 1000,0 мкФ или выше на напряжение не ниже 16 В.

Напряжение на выходе — фиксированное, величина его зависит от нагрузки. Чем больше ток, тем меньше величина этого напряжения. Для получения регулируемого и стабильного выходного напряжения требуется более сложная схема. Получить регулируемое напряжение от схемы, приведенной на рис. 4 можно двумя способами:

  1. Подавая на первичную обмотку трансформатора Т1 регулируемое напряжение, например, от ЛАТРа.
  2. Сделав от вторичной обмотки трансформатора несколько отводов и поставив, соответственно, переключатель.

Диодный мост? Это совсем не то, что Крымский. Это такой маленький диодный мостик, схема которого строится из небольших совсем электронных устройств — диодов. Их мы собираем даже своими руками. Да, соберите своими руками и увидите, что это легко и быстро, надо только знать, из чего и для чего. Он состоит из диодов.

Однофазные выпрямители

Основными схемами однофазных выпрямителей являются однополупериодная и двухполупериодная (мостовая или со средней точкой).

Однофазная однополупериодная схема является самой простейшей схемой выпрямителя.

Трансформатор преобразовывает сетевое напряжение первичной обмотки Uc в напряжение вторичной обмотки U2. Так как диод Д имеет одностороннюю проводимость, ток I2 будет протекать только при положительной полуволне вторичного напряжения, при отрицательной полуволне диод будет закрыт. Так как ток в нагрузке Rн протекает только в один полупериод, отсюда и название выпрямителя — однополупериодный.

К недостаткам однополупериодных выпрямителей следует отнести униполярный ток, который, проходя через вторичную обмотку, намагничивает сердечник трансформатора, изменяя его характеристики и уменьшая КПД, высокий уровень пульсаций и большое обратное напряжение на диоде.

Двухполупериодные схемы выпрямления уже значительно интересней. Из них наибольшую популярность приобрела мостовая схема включения диодов.

Схема состоит из трансформатора и четырех диодов,собранных мостом. Одна из диагоналей моста соединена с выводами вторичной обмотки трансформатора, вторая диагональ с нагрузкой. При положительном потенциале в точке a вторичной обмотки трансформатора ток пойдет по цепи точка a вторичной обмотки — A — диод Д1 — B — нагрузка Rн — D — диод Д3. К диодам Д2 и Д4 при этом приложено обратное напряжение, они заперты. При изменении направления Э.Д.С и тока во вторичной обмотке положительный потенциал появится уже в точке b вторичной обмотки трансформатора. Ток при этом пойдет по цепи b — C — диод Д2 — B — нагрузка Rн — D — диод Д4.

Таким образом ток в нагрузке не меняет своего направления. Кривые напряжения и тока на нагрузке повторяют (при прямом напряжении на диодах U np ≈ 0) по величине и форме выпрямленные полуволны напряжения и тока вторичной обмотки трансформатора. Они пульсируют от нуля до максимального значения.

Кроме мостовой схемы выпрямления может применяться двунаправленная схема.

Схема состоит из трансформатора со средней отпайкой на вторичной обмотке и двух диодов. Когда в точке a имеется положительный потенциал ток протекает по цепи a — диод Д1 — нагрузка Rн — отпайка вторичной обмотки. При положительном потенциале в точке b вторичной обмотки ток потечет по цепи b — диод Д2 — с — нагрузка Rн — отпайка вторичной обмотки.

На левом рисунке показана зависимость напряжения вторичной обмотки трансформатора от времени, на правом изменение тока нагрузки. Как следует из работы выпрямителя, направление тока в нагрузке неизменно. Вторичная обмотка трансформатора двухфазная и каждая фаза работает половину периода. Напряжение на нагрузке в любой момент равно мгновенному значению ЭДС фазы, работающей в данный момент.

К основным минусам данной схемы можно отнести необходимость делать отпайку вторичной обмотки трансформатора и большое обратное напряжение диода Uобр = 2U2м = 3,14U0, поэтому она не получила столь широкого распространения как мостовая схема.

Бестрансформаторная схема диодного моста выпрямителя 24 вольта

В радиолюбительской практике широко используются маломощные блоки питания без трансформаторов.

Питание 220 В подается через конденсатор балласта С1. Выпрямитель состоит из диодов VD1, VD2 и стабилитронов VD3, VD4. Чтобы устранить броски тока через мост, при подключении питания последовательно с конденсатором устанавливается резистор ограничения тока сопротивлением 50-100 Ом. Чтобы разрядить конденсатор при неработающей схеме, к нему параллельно подключается резистор на 150-300 кОм.

На выход схемы устанавливается сглаживающий конденсатор емкостью 2000 мкф.

Отсутствие гальванической связи создает опасность удара электрическим током.

Принцип работы диода

Диод — это полупроводниковый прибор, имеющий малое сопротивление для тока в одном направлении, и препятствующий его прохождению в обратном. Физически диод состоит из одного p-n перехода. Конструктивно представляет собой элемент, содержащий два вывода. Вывод, подключённый к p-области, называется анодом, а соединённый с n-областью — катодом.

При работе диода существует три его состояния:

  • сигнал на выводах отсутствует;
  • он находится под действием прямого потенциала;
  • он находится под действием обратного потенциала.

Прямым потенциалом называется такой сигнал, когда плюсовой полюс источника питания подключён к области p-типа полупроводника, другими словами, полярность внешнего напряжения совпадает с полярностью основных носителей. При обратном потенциале отрицательный полюс подключён к p-области, а положительный к n.

В области соединения материала n- и p-типа существует потенциальный барьер. Он образуется контактной разностью потенциалов и находится в уравновешенном состоянии. Высота барьера не превышает десятые доли вольта и препятствует продвижению носителей заряда вглубь материала.

Если к прибору подключено прямое напряжение, то величина потенциального барьера уменьшается и он практически не оказывает сопротивление протеканию тока. Его величина возрастает и зависит только сопротивления p- и n- области. При прикладывании обратного потенциала, величина барьера увеличивается, так как из n-области уходят электроны, а из p-области дырки. Слои обедняются и сопротивление барьера прохождению тока возрастает.

Основным показателем элемента является вольт-амперная характеристика. Она показывает зависимость между приложенным к нему потенциалом и током, протекающим через него. Представляется эта характеристика в виде графика, на котором указывается прямой и обратный ток.

Устройство и принцип работы

Диодный мост представляет собой электронную схему, собранную на основе выпрямительных диодов, который предназначен для преобразования подаваемого на него переменного тока в постоянный. Чаще всего в состав схемы включаются диоды Шоттки, но это не категоричное требование, поэтому в каком-либо конкретном случае может заменяться и другими моделями, подходящими по техническим параметрам. Схема моста из полупроводниковых диодов включает в себя четыре элемента для одной фазы. Диодный мостик может набираться как отдельными диодами, так и собираться единым блоком, в виде монолитного четырехполюсника.

Принцип работы диодного моста основывается на способности p – n перехода пропускать электрический ток только в одном направлении. Схема включения диодов в мост построена таким образом, чтобы для каждой полуволны создавался свой путь протекания электрического тока к подключенной нагрузке.

Рис. 1. Принцип работы диодного моста

Для пояснения выпрямления диодным мостом необходимо рассматривать работу схемы относительно формы напряжения на входе. Следует отметить, что кривая напряжения за один период имеет две полуволны – положительную и отрицательную. В свою очередь, каждая полуволна имеет процесс нарастания и убывания по отношению к максимальной точке амплитуды.

Поэтому работа выпрямительного устройства будет иметь такие этапы:

  • На вход выпрямительного моста, обозначенного буквами А и Б подается переменное напряжение 220В.
  • Каждая полуволна, подаваемая из электрической сети или от обмоток трансформатора, преобразуется в постоянную величину парой диодов, расположенных по диагонали.
  • Положительная полуволна будет проводиться парой диодов VD1 и VD4 и выдавать на выход моста полуволну в положительной области оси ординат.
  • Отрицательная полуволна будет выпрямляться парой диодов VD2 и VD3, с которых на том же выходе моста возникнет очередная полуволна в положительной области.

В связи с тем, что оба полупериода получают реализацию на выходе диодного моста, такое электронное устройство получило название двухполупериодного выпрямителя, также его называют схемой Гретца.

Обозначение на схеме и маркировка

На электрической схеме диодный мост может иметь различные варианты изображения. Чаще всего вы можете встретить такие обозначения:

Рис. 2. Обозначение на схеме

Первый вариант обозначения мостового выпрямителя используется, как правило, в тех ситуациях, когда электронный прибор представляет собой монолитную конструкцию, единую сборку. На схеме маркировка выполняется латинскими буквами VD, за которыми указывается порядковый номер.

Второй вариант наиболее распространен  для тех ситуаций, когда диодный мост состоит из отдельных полупроводниковых устройств, собранных в одну схему. Маркировка второго варианта, чаще всего, выполняется в виде ряда VD1 – VD4.

Следует также отметить, что вышеприведенное схематическое обозначение и маркировка хоть и имеет общепринятый характер, но может нарушаться при составлении схем.

Разновидности диодных мостов

В зависимости от количества фаз, которые подключаются к диодному мосту, различают однофазные и трехфазные модели. Первый вариант мы детально рассмотрели на примере схемы Гретца выше.

Трехфазные выпрямители, в свою очередь, разделяются на шести- и двенадцатипульсовые модели, хотя схема диодного моста у них идентична. Рассмотрим более детально работу диодного устройства для трехфазной схемы.

Рис. 3. Схема трехфазного диодного моста

Диодный мост, приведенный на рисунке выше, получил название схемы Ларионова. Конструктивно для каждой из фаз устанавливается сразу два диода в противоположном направлении друг относительно друга

Здесь важно отметить, что синусоида во всех трех фазах имеет смещение в 120° друг относительно друга, поэтому на выходах устройства при наложении результирующей диаграммы получится следующая картина:

Рис. 4. Напряжение выпрямленное трехфазным мостом

Как видите, в сравнении с однофазным выпрямителем на базе диодного моста картина получается более плавной, а скачки напряжения имеют значительно меньшую амплитуду.

Для чего нужен диодный мост

Как мы должны были понять, диодный мост нужен для того, чтобы сделать из переменного тока постоянный. Это устройство придумал немецкий ученый Леоц Гретц, второе название диодного моста – мостовая схема Гретца.

Принцип действия таков: на вход диодного моста подается переменный электрический ток, а на его выходах появляется постоянный пульсирующий ток. Частота пульсаций зависит от частоты переменного тока.

Если взять стандартное значение частоты для наших широт (50 Гц), то частота пульсаций постоянного тока будет равна 100 Гц. Для того, чтобы сгладить пульсации, ставиться конденсатор – это устройство будет полноценным выпрямителем.

Схема, которая рассматривается в данной статье, применяется в двухфазной сети. Для трехфазной сети применяется другие схемы, которые не будут рассмотрены в этой статье. Выполняется в виде четырех соединённых диодов или диодной сборки. Диодная сборка – это тот же диодный мост, только сделан в одном корпусе. У обоих вариантов исполнения есть свои плюсы и недостатки. Например, в случае неисправности одного из диодов, продеться заменить всю диодную сборку – это ее минус.

При подборе диодного моста или отдельных диодов для него, учитываются следующие характеристики:

  • Обратное напряжение диодов;
  • Обратный ток диодов;
  • Длительно допустимый ток;
  • Максимальная рабочая температура;
  • Рабочая частота (актуально для высокочастотных приборов).

Это основные параметры, по которым подбираются диоды для самостоятельной сборки или диодные мосты. Все зависит от нагрузки, которую вы хотите запитать, но будь то блок питания или зарядное устройство, лучше взять с запасом, нежели впритык.

Это обезопасит ваше устройство. Бывают ситуации, когда диодный мост может сильно нагреваться или даже сгореть. Это происходит из-за высокого тока, которые проходя по диодам нагревает их, либо из-за плохого охлаждения, особенно в мощных устройствах.

Для лучшего охлаждения и профилактики сгораний диодного моста, рекомендуется использовать радиаторы, которые будут эффективно рассеивать тепло.

Диоды тоже имеют свое сопротивление и на каждом из них падает напряжение. Для высоковольтных аппаратов – это не существенные потери, но для низковольтных приемников (до 12 вольт) такие потери будут существенны.

В этой ситуации в место обычных диодов, в схеме применяется диоды Шоттки. На выпрямителе из таких диодов будет низкое падение напряжения, приемлемое для низковольтной аппаратуры.

Из-за особенностей диодов Шоттки, такие диодные мосты могут работать на сверхвысоких частотах. Но будьте осторожны, при малейшем превышении обратного напряжения, такие диоды выходят из строя.

Диодный мост из диодов Шоттки

Для самодельных схем, радиолюбители частенько применяют выпрямительные мосты на диодах Шоттки. Использование диодов Шоттки в мостах обусловлено низким падением напряжения на диоде, что влечет за собой меньшие потери на мосту и снижает его нагрев. Большинство диодов Шоттки выпускаются сдвоенными, в корпусах с общим катодом, и сборка моста из такого диода вводит новичка в тупик. Сегодня мы рассмотрим, какими способами можно собрать диодный мост из диодов Шоттки.

Диодный мост из четырех диодов Шоттки

Самый простой способ собрать мост на диодах Шоттки – соединить аноды диодной сборки и получить со сдвоенного диода обычный. Такой вариант позволит использовать по полной оба диода каждой диодной сборки.

Диодный мост из трех диодов Шоттки

Подбирая диоды Шоттки для моста, нужно учитывать, что производители указывают максимальный ток диодной сборки, а не каждого диода, который в нее входит. Например, диодная сборка MBR20100CT рассчитана на ток 20А, то каждый из двух диодов рассчитан на 10А. Если параметры используемых диодных сборок позволяют, можно немного сэкономить и построить диодный мост всего из трех диодов Шоттки.

Диодный мост из двух диодов Шоттки

Построить диодный мост из двух диодов Шоттки с общим катодом – НЕВОЗМОЖНО. Необходимо иметь в наличии диод с общим катодом и с общим анодом. Купить диоды Шоттки с общим анодом крайне тяжело, они очень редко встречаются в продаже. Если все же получилось их приобрести, схема моста будет выглядеть вот так.

comments powered by HyperComments

diodnik.com

Схема сборки из диодов

Выражение «мост из диодов» происходит от слияния двух слов, подчёркивающих принцип работы устройства. Под этим словосочетанием понимается электрический прибор, служащий для преобразования переменного тока в пульсирующий. Состоит он из четырёх диодов, образующих соединение по схеме Гретца.

Переменное электрическое напряжение представляет собой гармонический сигнал, амплитуда которого изменяется по синусоидальному закону во времени. Условно его можно представить в виде отрицательных и положительных полуволн. При подаче сигнала на вход диода через него может пройти только одна полуволна, в результате чего на выходе направление тока станет односторонним.

Для создания полноценного выпрямителя схема диодного моста должна обеспечивать преобразование как положительной, так и отрицательной составляющей сигнала. Если диоды подключить по схеме Гретца, то в каждый полупериод волны ток сможет протекать только через два элемента. То есть устройство будет поочерёдно выпрямлять каждую полуволну.

При подаче на вход моста переменного напряжения в тот момент, когда сигнал будет описываться положительной составляющей, диоды VD2 и VD3 будут для него открыты, а VD1 и VD4 заперты. При смене полярности состояние выпрямителей изменится, ток потечёт через VD4 и VD1, в то время как VD3, VD2 окажутся закрытыми.

В итоге форма сигнала станет постоянной, так как на выходе устройства практически не будет промежутка времени, при котором напряжение будет равно нулю. При этом частота выходного сигнала увеличится вдвое. Например, если на устройство подать напряжение 220 в из электросети, то на его выходе получится постоянный ток с частотой 100 Гц. Это пульсирование считается паразитным, мешающим работе электронных узлов, поэтому в электрических схемах выход прибора подключается к электролитическому конденсатору, сглаживающему пульсации. Такая схема применяется в однофазных сетях, в трёхфазных же используется шесть диодов, работающих попарно (по аналогии со схемой Гретца).

Схема и принцип работы диодного моста

Схема диодного моста Рис. Наибольший рабочий ток выпрямления.
С появлением дешёвых полупроводниковых диодов эту схему стали применять всё чаще и чаще. Ответ изображён на следующем рисунке. Определили, еще ничего не зная ни о свободных электронах, ни о дырках.
Результат — более высокая степень сглаживания при той же емкости конденсатора фильтра, увеличение КПД используемого в выпрямителе трансформатора. В случае выхода из строя одного диода в составе монолитной сборки менять придется всю ее целиком несмотря на то, что три оставшихся элемента могут быть исправными.
Пульсации сглаживаются, а напряжение становится близким к постоянному. Схема подключения устройства На электрических схемах и печатных платах диодный выпрямитель обозначается в виде значка диода или латинскими буквами.
Следуя из названия, собран мост из 4 или 6 диодов. Работая с обеими полуволнами переменного напряжения, диодный мост выгодно отличается от однополупериодных выпрямителей.

Принцип работы диодного моста

Металлы характеризуется тем, что электроны в их кристаллической решетке почти не держатся, вылетают и болтаются между атомами кристалла по любому поводу, самая небольшая температура, заставляющая ядра атомов на своих местах слегка вибрировать, вышибает электроны напрочь и массово. В случае отсутствия мультиметра можно воспользоваться обычным вольтметром.

В данной схеме, ток протекает от фазы с наибольшим потенциалом, через нагрузку к фазе с наименьшем потенциалом. Данную пульсацию можно немного уменьшить с помощью параллельно включенного конденсатора к выходу диодного моста.

Его величина возрастает и зависит только сопротивления p- и n- области. Устройство выпрямителя и схема подключения На сегодняшний день не придумано ничего лучшего для полноценного выпрямления напряжения, чем обычный диодный мост.
ЧТО ТАКОЕ ДИОДНЫЙ МОСТ

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector